That Which Does Not Kill Us, Makes Us Stronger. DO NOT Let The System Get You Down

Yarı İletkenli Elektronik Devre Elemanları - Bobin (Coil)

24 - Bobin:
Bir iletkenin ne kadar çok eğik ve büzük bir şekilde ise o kadar direnci artar. Bobin de bir silindir üzerine sarılmış ve dışı izole edilmiş bir iletken telden oluşur. Bobine alternatif elektrik akımı uygulandığında bobinin etrafında bir manyetik alan meydana gelir. Aynı şekilde bobinin çevresinde bir mıknatıs ileri geri hareket ettirildiğinde bobind elektrik akımı meydana gelir. Bunun sebebi mıknatıstaki manyetik alanın bobin telindeki elektronları açığa çıkarmasıdır. Bobin DC akıma ilk anda direnç gösterir. Bu nedenle bobine DC akım uygulandığında bobin ilk anda yalıtkan daha sonra iletkendir. Bobine AC akım uygulandığında ise akımın yönü devamlı değiştiği için bir direnç göterir. Bobinin birimi "Henri" 'dir. Alt katları ise Mili Henri (mH) ve Mikro Henridir (µH). Elektronik devrelerde kullanılan küçük bobinlerin boşta duranları olduğu gibi nüve üzerine sarılmış olanlarıda mevcuttur. Ayrıca bu nüve üstüne sarılı olanların nüvesini bobine yaklaştırıp uzaklaştırarak çalışan ayarlı bobinlerde mevcuttur. Bobin trafolarda elektrik motorlarında kullanılır. Elektronik olarakta frekans üreten devrelerde kullanılır.

Bobinler (Coil)

Sabit Bobinler ve Yapıları:
Bobin bir yalıtkan makara (mandren veya karkas) üzerine belirli sayıdaki sarılmış tel grubudur.
Kullanım yerine göre, makara içerisi boş kalırsa havalı bobin, demir bir göbek (nüve) geçirilirse nüveli bobin adı verilir. Bobinin her bir sarımına spir denir. Şekil 1.28 'de bobin sembolleri verilmiştir.
Aşağıdaki üst sırada bulunan semboller eski alt sırada bulunan semboller yeni gösterilim şeklidir.
Şekil 1.27
Şekil 1.27 - Değişik Bobin Sembolleri

Bobindeki Elektriksel Olaylar:

Şekil 1.29
Şekil 1.29 - içinden akım geçen bobindeki Magnetik alan kuvvet çizgileri
Bilindiği gibi bir iletkenden akım geçirildiğinde, iletken etrafında bir magnetik alan oluşur. Bu alan kağıt üzerinde daireler şeklindeki kuvvet çizgileri ile sembolize edilir.
Bir bobinden AC akım geçirildiğinde, Şekil 1.29 'da görüldüğü gibi bobin sargılarını çevreleyen bir magnetik alan oluşur.
Akım büyüyüp küçülüşüne ve yön değiştirmesine bağlı olarak bobinden geçen kuvvet çizgileri çoğalıp azalır ve yön değiştirir.
Bobine bir DC gerilim uygulanırsa, magnetik alan meydana gelmeyip bobin devrede bir direnç özelliği gösterir.

Zıt Elektro Motor Kuvveti (EMK)

Bobin içerisindeki kuvvet çizgilerinin değişimi, bobinde zıt elektromotor kuvvet (zıt EMK Ez) adı verilen bir gerilim endükler. Bu gerilimin yönü Şekil 1.30 'da gösterilmiş olduğu gibi kaynak gerilimine ters yöndedir.
Dolayısıyla da zıt EMK, bobinden, kaynak geriliminin oluşturduğu akıma ters yönde bir akım akıtmaya çalışır. Bu nedenledir ki, kaynak geriliminin oluşturduğu "I" devre akımı, ancak T/4 periyot zamanı kadar geç akmaya başlar.
Zıt EMK 'nın işlevi, LENZ kanunu ile şöyle tanımlanmıştır.
LENZ kanununa göre zıt EMK, büyümekte olan devre akımını küçültücü, küçülmekte olan devre akımını ise büyültücü yönde etki yapar.

Endüktif Reaktans (XL):

Bobinin, içinden geçen AC akıma karşı gösterdiği dirence endüktif reaktans denir.
Endüktif reaktans XL ile gösterilir. Birimi "Ohm" dur.
Şöyle ifade edilir:
XL = ω.L 'dir. ω = 2.π.f olup yerine konulursa, XL = 2.π.f.L ohm olur.
ω : Açısal hız (Omega)
f: Uygulana AC gerilimin frekansı birimi, Herzt (Hz) 'dir.
L: Bobinin endüktansı olup birimi, Henry (H) 'dir.
Şekil 1.30
Şekil 1.30 - Zıt EMK 'nın etkisi
a) AC kaynak geriliminin pozitif alternansındaki devre akımı.
b) Kaynak gerilimi (v), devre akımı (i) ve zıt EMK (Ez) arasındaki bağıntı
"L" nin değeri bobinin yapısına bağlıdır.
Bobinin sarım sayısı ve kesit alanı ne kadar büyük olursa, "L" o kadar büyük olur. Dolayısıyla AC akıma gösterdiği dirençte o oranda büyür.
"L" nin birimi yukarıda da belirtildiği gibi Henry (H) 'dir. Ancak genellikle değerler çok küçük olduğundan "Henry" olarak yazımda çok küsürlü sayı çıkar.
Bunun için miliHenry (mH) ve mikrohenry (µH) değerleri kullanılır.
Henry, miliHenry ve mikroHenry arasında şu bağıntı vardır.
MiliHenry (mH) :1mH = 10-3 H veya 1H = 103mH
MikroHenry (µH) : 1µH = 10-6 H veya 1H = 106 µH 'dir.

Karşılıklı Endüktans (M):

Aynı nüve üzerine sarılı iki bobinin birinden akım geçirildiğinde, bunun nüvede oluşturduğu kuvvet çizgileri diğer sargıyı da etkileyerek, bu sargının iki ucu arasında bir gerilim oluşturur. Bu gerilime endüksiyon gerilimi denir.
Bu şekilde iletişim, karşılıklı (ortak) endüktans denen belirli bir değere göre olmaktadır.
Karşılıklı endüktans (M) ile gösterilir ve şu şekilde ifade edilir:
M=√L1.L2           L1 ve L2, iki bobinin self endüktansıdır.
M 'in birimi de Henry(H) 'dir.
Şöyle tanımlanır:
Aynı nüve üzerindeki iki bobinin birincisinden geçen 1 amperlik AC akım 1 saniyede, ikinci bobinde 1V 'luk bir gerilim endükliyorsa iki bobin arasındaki karşılıklı endüktans M=1 Henry 'dir.
Bobinler seri bağlanırsa toplam endüktans: L=L1+L2+L3+.......... olur.
Aynı nüve üzerindeki iki bobin seri bağlanırsa: L=L1+L2±2M olur.
Şekil 1.31 'de değişik bobin görüntüleri verilmiştir.

Bobinin Kullanım Alanları:

Bobinin elektrik ve elektronikte yaygın bir kullanım alanı vardır. Bunlar kullanım alanlarına göre şöyle sıralanabilir.
Elektrikte:
- Doğrultucular da şok bobini
- Transformatör
- Isıtıcı v.b.
- Elektromıknatıs (zil, elektromagnetik vinç)
Elektronikte:
- Osilatör
- Radyolarda ferrit anten elemanı (Uzun, orta, kısa dalga bobini)
- Telekomünikasyonda frekans ayarı (ayarlı göbekli bobin)
- Telekomünikasyonda röle
- Yüksek frekans devrelerinde  (havalı bobin)
Özellikle de radyo alıcı ve vericilerinde de anten ile bağlantıda değişik frekansların (U.D,O.D,KD) alımı ve gönderiminde aynı ferrit nüveyi kullanan değişik bobinler ve bunlara paralel bağlı kondansatörlerden yararlanır.
Şekil 1.31
a) Ayarlı hava nüveli bobin
b) Ayarlı demir nüveli bobin
c) Ayarlı ferrit nüveli bobin
d) Sabit hava nüveli bobinler
e) Demir çekirdekli bobin
f) Şiltli ses frekansı şok bobini
g) Güç kaynağı şok bobini
h) Toroid
i) Şiltli, yüksek endüktanslı şok bobini

Hiç yorum yok:

Yorum Gönder

Ne Mutlu Türküm Diyene